Detection of New Malicious Code Using N-grams Signatures

نویسندگان

  • Tony Abou-Assaleh
  • Nick Cercone
  • Vlado Keselj
  • Ray Sweidan
چکیده

Signature-based malicious code detection is the standard technique in all commercial anti-virus software. This method can detect a virus only after the virus has appeared and caused damage. Signature-based detection performs poorly when attempting to identify new viruses. Motivated by the standard signature-based technique for detecting viruses, and a recent successful text classification method, n-grams analysis, we explore the idea of automatically detecting new malicious code. We employ n-grams analysis to automatically generate signatures from malicious and benign software collections. The n-gramsbased signatures are capable of classifying unseen benign and malicious code. The datasets used are large compared to earlier applications of n-grams analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unknown Malcode Detection Using OPCODE Representation

The recent growth in network usage has motivated the creation of new malicious code for various purposes, including economic ones. Today’s signature-based anti-viruses are very accurate, but cannot detect new malicious code. Recently, classification algorithms were employed successfully for the detection of unknown malicious code. However, most of the studies use byte sequence n-grams represent...

متن کامل

N-grams-based File Signatures for Malware Detection

Malware is any malicious code that has the potential to harm any computer or network. The amount of malware is increasing faster every year and poses a serious security threat. Thus, malware detection is a critical topic in computer security. Currently, signature-based detection is the most extended method for detecting malware. Although this method is still used on most popular commercial comp...

متن کامل

Micro-Signatures: The Signatures Hidden in Anomaly Detection Systems

The field of intrusion detection is divided into signature detection and anomaly detection. The former involves identifying patterns associated with known attacks and the latter involves attempting to learn a ‘normal’ pattern of activity and then producing security alerts when behaviors outside of those norms is detected. The ngrams methodology has arguably been the most successful technique fo...

متن کامل

Unknown Malicious Code Detection – Practical Issues

The recent growth in Internet usage has motivated the creation of new malicious code for various purposes, including information warfare. Today’s signature-based anti-viruses can detect accurately known malicious code but are very limited in detecting new malicious code. New malicious codes are being created every day, and their number is expected to increase in the coming years. Recently, mach...

متن کامل

Analyzing new features of infected web content in detection of malicious web pages

Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004